The Symplectic Camel and Quantum Universal Invariants: the Angel of Geometry versus the Demon of Algebra
نویسنده
چکیده
A positive de nite symmetric matrix quali es as a quantum mechanical covariance matrix if and only if + 12 i~ 0 where is the standard symplectic matrix. This well-known condition is a strong version of the uncertainty principle, which can be reinterpreted in terms of the topological notion of symplectic capacity, closely related to Gromovs non-squeezing theorem. We show that a recent re nement of the latter leads to a new class of geometric invariants. These are the volumes of the orthogonal projections of the covariance ellipsoid on symplectic subspaces of the phase space. We compare these geometric invariants to the algebraic universal quantum invariantsof Dodonov and Sera ni.
منابع مشابه
00 6 Calabi - Yau Algebras
We introduce some new algebraic structures arising naturally in the geometry of CY manifolds and mirror symmetry. We give a universal construction of CY algebras in terms of a noncommutative symplectic DG algebra resolution. In dimension 3, the resolution is determined by a noncommutative potential. Representation varieties of the CY algebra are intimately related to the set of critical points,...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کامل60 20 07 v 3 9 F eb 1 99 6 VIRTUAL MODULI CYCLES AND GW - INVARIANTS
The study of moduli spaces plays a fundamental role in our understanding geometry and topology of algebraic manifolds, or more generally, symplectic manifolds. One example is the Donaldson theory (and more recently the Seiberg-Witten invariants), which gives rise to differential invariants of 4-manifolds [Do]. When the underlying manifold is an algebraic surface, then it is the intersection the...
متن کاملAbout enumerative algebraic geometry in TGD framework
String models and M-theory involve both algebraic and symplectic enumerative geometry. Also in adelic TGD enumerative algebraic geometry emerges. This article gives a brief summary about the basic ideas involved and suggests some applications to TGD. 1. One might want to know the number of points of sub-variety belonging to the number field defining the coefficients of the polynomials. This pro...
متن کاملThe Quantum Cohomology of Blow-ups of P and Enumerative Geometry
The enumerative geometry of curves in algebraic varieties has taken a new direction with the appearance of Gromov-Witten invariants and quantum cohomology. Gromov-Witten invariants originate in symplectic geometry and were first defined in terms of pseudo-holomorphic curves. In algebraic geometry, these invariants are defined using moduli spaces of stable maps. Let X be a nonsingular projective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013